

Home - Idkong.com/Calib3D

GitHub - Idkong1205/Calib3D

Motivation & Contribution

TL;DR

Calib3D is a large benchmark for examining the uncertainty of 3D scene understanding systems under different driving conditions.

- > Well-calibrated 3D scene understanding models are anticipated to deliver low uncertainties when predictions are accurate and high **uncertainties** when predictions are **inaccurate**.
- > Our proposed depth-aware scaling (**DeptS**) is capable of outputting accurate estimates, highlighting its potential for real-world usage.
- > The plots shown are the **point-wise calibration errors**. The color goes from dark to light denotes low and high errors, respectively.

香港科技大學 HONG KONG

Calib3D: Calibrating Model Preferences for Reliable 3D Scene Understanding

Lingdong Kong* Xiang Xu* Jun Cen Wenwei Zhang Liang Pan Kai Chen Ziwei Liu

Design & Methodology

Benchmark Design

- > 3D data are well-known to be highly heterogeneous due to different sensor acquisitions, placements, scene conditions, annotation protocols, etc.
- \succ A learning system trained on different data sources tends to exhibit diverse predictive confidence and accuracy.
- Calib3D encompasses a study of 28 state-of-the-art models on 10 large-scale 3D datasets.

DeptS: Depth-Aware Scaling for Better 3D Calibration

- > Different from RGB images, the point cloud data are unordered and **texture-less**, which inherits extra difficulties in feature learning.
- \succ To pursue better 3D calibration, we propose a straightforward yet effective **DeptS** method. We observe a close correlation among calibration error, prediction entropy, and depth – an inherent 3D information that can be calculated based on Cartesian coordinates.

 \succ Our approach is motivated by the observation that uncalibrated 3D models tend to have low accuracy in the middle-to-far region of the ego-vehicle, while posing severe over-confident predictions.

Comparative & Ablation Study

a. ECE vs. mloU

Туре	nuScenes-C						SemanticKITTI-C					
	UnCal	TempS	LogiS	DiriS	MetaC	DeptS	UnCal	TempS	LogiS	DiriS	MetaC	DeptS
Clean •	2.45%	2.34%	2.34%	2.42%	2.29%	2.23%	3.04%	3.01%	3.08%	3.30%	2.69%	2.63%
Fog o	5.52%	5.42%	5.49%	5.43%	4.77%	4.72%	12.66%	12.55%	12.67%	12.48%	11.08%	10.94%
Wet Ground o	2.63%	2.54%	2.54%	2.64%	2.55%	2.52%	3.55%	3.46%	3.54%	3.72%	3.33%	3.28%
Snow \circ	13.79%	13.32%	13.53%	13.59%	11.37%	11.31%	7.10%	6.96%	6.95%	7.26%	5.99%	5.63%
Motion Blur \circ	9.54%	9.29%	9.37%	9.01%	8.32%	8.29%	11.31%	11.16%	11.24%	12.13%	9.00%	8.97%
Beam Missing \circ	2.58%	2.48%	2.49%	2.57%	2.53%	2.47%	2.87%	2.83%	2.84%	2.98%	2.83%	2.79%
Crosstalk \circ	13.64%	13.00%	12.97%	13.44%	9.98%	9.73%	4.93%	4.83%	4.86%	4.81%	3.54%	3.48%
Incomplete Echo o	2.44%	2.33%	2.33%	2.42%	2.32%	2.21%	3.21%	3.19%	3.25%	3.48%	2.84%	2.19%
Cross Sensor \circ	4.25%	4.15%	4.20%	4.28%	4.06%	3.20%	3.15%	3.13%	3.18%	3.43%	3.17%	2.96%
Average •	6.78%	6.57%	6.62%	6.67%	5.74%	5.56%	6.10%	6.01%	6.07%	6.29%	5.22%	5.03%

> The results from Calib3D benchmark expose a significant gap in the calibration of current 3D models, which often achieve high accuracy but struggle to align confidence with predictive accuracy.

Experiments & Analysis

> Aleatoric Uncertainty in 3D. We examine how intrinsic factors, e.g., LiDAR sensor measurement noises and point cloud density variations, contribute to the data uncertainty in 3D models.

> Epistemic Uncertainty in 3D. Our investigation extends to model uncertainties coped with the diverse 3D architectures, highlighting the importance of addressing knowledge gaps in model training.

c. LiDAR Modality

 \succ Through extensive evaluations of 3D models across diverse 3D datasets, we highlighted critical challenges in delivering confident and **accurate** predictions, particularly in safety-critical applications.