

Motivation & Contribution

TL;DR

- > We introduce SuperFlow, a novel framework designed to harness consecutive LiDAR-camera pairs for establishing spatiotemporal pretraining objectives.
- Our SuperFlow in corporates designs including view novel consistency alignment, dense-tosparse regularization, and flowbased contrastive learning, which data better encourages representation learning effects Lidar between camera and sensors across consecutive scans.
- Extensive comparative across 11 heterogeneous datasets validate the effectiveness and superiority of **SuperFlow**.

View Consistency Alignment

 \succ We employ CLIP's text encoder and fine-tune the last layer of the segmentation head from visual foundation models with predefined text prompts, which allows the segmentation head to generate language-guided semantic categories for each pixel.

4D Contrastive Superflows are Dense 3D Representation Learners

Methodology

D2S: Dense-to-Sparse Consistency Regularization

- \succ Due to the natural of LiDAR scanning and data acquisition, different areas within the same scene can have significantly different point densities.
- > We combine multi-sweep point clouds from consecutive frames to regularize the features of the key frame point cloud via semantic superpoints.

FCL: Flow-Based Contrastive Learning

- SuperFlow takes multiple LiDAR-camera pairs from consecutive scans as input and establishes spatial consistency across sensors and temporal consistency across times.
- > Spatial consistency module is designed to align 3D representation with 2D prior knowledge via contrastive learning loss.
- > Temporal consistency module focuses on consistent dynamics via the semantic flow across different scenes.

Xiang Xu^{1,*} Lingdong Kong^{2,*} Hui Shuai³ Wenwei Zhang⁴ Liang Pan⁴ Kai Chen⁴ Ziwei Liu⁵ QingShan Liu³

Experiments & Analysis

In-Domain and Cross-Domain Benchmarks

representations.

Mothod	Venue	Distill	nuScenes					KITTI	Waymo	
Method			\mathbf{LP}	1 %	5 %	10 %	25 %	Full	1%	1%
Random	-	_	8.10	30.30	47.84	56.15	65.48	74.66	39.50	39.41
PPKT [63]	arXiv'21	ViT-S o	38.60	40.60	52.06	59.99	65.76	73.97	43.25	47.44
SLidR [82]	CVPR'22	ViT-S o	44.70	41.16	53.65	61.47	66.71	74.20	44.67	47.57
Seal $[61]$	NeurIPS'23	ViT-S o	45.16	44.27	55.13	62.46	67.64	75.58	46.51	48.67
SuperFlow	Ours	ViT-S •	46.44	47.81	59.44	64.47	69.20	76.54	47.97	49.94
PPKT [63]	arXiv'21	ViT-B o	39.95	40.91	53.21	60.87	66.22	74.07	44.09	47.57
SLidR [82]	CVPR'22	ViT-B o	45.35	41.64	55.83	62.68	67.61	74.98	45.50	48.32
Seal $[61]$	NeurIPS'23	ViT-B o	46.59	45.98	57.15	62.79	68.18	75.41	47.24	48.91
SuperFlow	Ours	ViT-B •	47.66	48.09	59.66	64.52	69.79	76.57	48.40	50.20
PPKT [63]	arXiv'21	ViT-L o	41.57	42.05	55.75	61.26	66.88	74.33	45.87	47.82
SLidR 82	CVPR'22	ViT-L \circ	45.70	42.77	57.45	63.20	68.13	75.51	47.01	48.60
Seal $[61]$	NeurIPS'23	ViT-L \circ	46.81	46.27	58.14	63.27	68.67	75.66	47.55	50.02
SuperFlow	Ours	ViT-L •	48.01	49.95	60.72	65.09	70.01	77.19	49.07	50.67

Ablation Study

Consistent improvements across datasets with the scale-up of network except for MinkUNet-1 large set of trainable param tends to be difficult to converge.

(a) "car" (3D)

(d) "car" (2D)

 \succ In-domain and cross-domain downstream tasks verify the effectiveness of SuperFlow, and the larger-scale of 2D pretrained network also contribute to better

ss varying of the 3D	Backbone Layer	nuScenes LP 1%	KITTI 1%	Waymo 1%
01 with a	MinkUNet o 18	47.20 47.70	48.04	49.24
	MinkUNet • 34	47.66 48.09	48.40	50.20
eters that	MinkUNet o 50	54.11 52.86	49.22	51.20
	MinkUNet o 101	$52.56 ext{ } 51.19$	48.51	50.01

(b) "manmade" (3D)

(e) "manmade" (2D)

(c) "sidewalk" (3D)

(f) "sidewalk" (2D)